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Quark–Gluon Plasma in Equilibrium State
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The thermodynamic potential of quark–gluon plasma (QGP) in equilibrium state is
calculated by finite temperature QCD. The pressure correction of QGP and the critical
temperature correction of deconfinement phase transition of hadron are discussed.
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1. INTRODUCTION

With indirect evidence of the Top quark found, all six quarks have been
verified to be existent. But up to now it is found that all the hadron states that
can be observed in isolation are color singlets and a single quark in isolation
is not observed, which suggests quarks are confined inside a hadron. A useful
phenomenological description of quarks in hadrons is provided by the bag model.
While there are many different versions of the model (Bardeenet al., 1975; Brown
and Rho, 1979; Lee, 1987), the MIT bag model contains the essential characteristics
of the phenomenology of quark confinement (Chodoset al., 1974). In the model
quarks are treated as massless particles inside a bag of finite dimension, and are
infinitely massive outside the bag. Confinement in the model is the result of the
balance of the bag pressure B (Wong, 1994), which is directed inward, and the
stress arising from the kinetic energy of the quarks and the gluons inside the bag.
Due to a hadron being a colorless particle, the quarks and the gluons inside the
hadron form a quark–gluon plasma (QGP) and the QGP is thought to exist in an
equilibrium state in general.

Lattice gauge theory predicts that a deconfinement phase transition of the
hadron occurs at high temperature and high density and a QGP can be produced
(Engels, 1997; Fucitoet al., 1984). The QGP is believed to have existed in the
early stage of the universe,∼10−4 s after the big bang. The ultra-relativistic heavy-
ion collisions offer the unique opportunity to study the production of QGP in
the laboratory. The space-time evolution of the QGP during an ultra-relativistic
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heavy-ion collision might proceed through different stages such as: 1) the pre-
equilibrium, 2) the equilibrium, and 3) the hadronization stage (Ruppertet al.,
2001). Hence in the paper we want to investigate the properties of QGP in equi-
librium state. First a thermodynamical potential of the QGP is calculated, then
the pressure of the QGP and the temperature of deconfinement phase transition of
hadron are discussed.

2. CALCULATION OF THERMODYNAMIC POTENTIAL OF QGP

QGP in equilibrium state is described by finite temperature QCD. According
to the theory of finite temperature field (Kapusta, 1989), a thermodynamic potential
of the QGP can be calculated by a perturbative method, a zero approximation of
the thermodynamic potential is the contribution of ideal gas and the other order
corrections are the contributions of the vacuum graphs when the interaction is
considered. The zero approximation (density of thermodynamical potential) is
(Wong, 1994)

Ä(0) = 37π2T3

90
. (1)

Now we calculate the first-order correction of the thermodynamical potential which
are the contributions of two-loop vacuum graphs shown in Fig. 1(a)–(d). Due to
high-loop calculations, the real-time formalism of temperature green function is
used because the difficult infinity sum will be met if the imaginary-time formalism
is used. The thermopropagators of quark, gluon (Feynman gauge), and ghost fields
respectively are the following (Landsman and Van Weert, 1987),

i Si j
β = δi j k

(
i

k2+ iη
+ 2πδk

)
, (2)

wherei , j = 1, 2, 3 are color indices; k = γ µkµ, δk = − δ(k2)
eβ|k0|+1.

i Dab
µν = −δabgµν

(
i

k2+ iη
+ 2πδk

)
, (3)

whereδk = δ(k2)
eβ|k0|−1.

iGab
µν = −δab

(
i

k2+ iη
+ 2πδk

)
. (4)

The calculations corresponding to four Feynman graphs in Fig. 1 are

Ia = −Nf g2

2

∫
dD pdDk

(2π )2D

(
i

p2+ iη
+ 2πδ p

)(
i

(p+ k)2+ iη
+ 2πδ p+k

)
×
(

i

k2+ iη
+ 2πδk

)
Na, (5)
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Fig. 1. Two-loop vacuum graphs and counterterm graphs.

whereNf comes from flavors of quark.

Na = Tr [γ µTa(p/+m)γ νTb(p/+ k/+m)]δabgµν

= −4(N2− 1)(p2+ p · k− 2m2). (6)

Ib = 1

8
(−ig2)

∫
dD pdDk

(2π )2D

(
i

p2+ iη
+ 2πδp

)(
i

k2+ iη
+ 2πδk

)
Nb, (7)

Nb = (−1)2Wabcd
µνρσ δ

adδbcgµσgνρ = 24N(N2− 1), (8)

whereWabcd
µνρσ is vertex function of four-gluon interaction.

Ic = −g2

12

∫
dD pdDk

(2π )2D

(
i

p2+ iη
+ 2πδp

)(
i

(p+ k)2+ iη
+ 2πδp+k

)
×
(

i

k2+ iη
+ 2πδk

)
Nc, (9)

Nc = (−1)3 f abcVµνλ(−p− k, p, k) f a′c′b′Vαβρδ
aa′δbb′δcc′gµαgλβgνρ

= 18N(N2− 1)(p2+ p · k+ k2), (10)

whereVµνλ(p, q, k) is vertex function of three-gluon interaction.

Id = −g2

2

∫
dD pdDk

(2π )2D

(
i

p2+ iη
+ 2πδp

)(
i

(p+ k)2+ iη
+ 2πδp+k

)
×
(

i

k2+ iη
+ 2πδk

)
Nd, (11)
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Nd = (−1)2[ f abcpµ f b′a′c′ (p+ k)ν ]δ
cc′gµνδaa′δbb′

= −N(N2− 1)(p2+ p · k). (12)

In above equations, we can separate the thermodynamical potential into two
parts, the zero temperature part and finite temperature part. Here we only consider
the finite temperature part because the zero temperature part is not related to tem-
perature and only gives out a constant after renormalization. There are ultraviolet
divergences in Fig. 1 (a), which may be removed by considering a counterterm.
The counterterm of Fig. 1(a) is Fig. 1(e), where dot denotes renormalization con-
stant that came from one-loop self-energy graph of quark. Minimum Scheme being
taken account of, the result of calculation of Fig. 1(e) is

Ie = Nf g2

16π2ε
δi j
∫

dD p

(2π )D−1
Tr(4m− p/)(p/+m)δ j i δ p

= −12m2Nf (N
2− 1)

g2

32π4ε

∫ ∞
0

dp
p2√

p2+m2

1

eβ
√

p2+m2 + 1
. (13)

In Figs. 1(b)–1(d), due to gluon field and ghost field being the massless fields,
some integrals in these graphs may become the following form,∫

dD p

(2π )D

1

pα
, α > 0. (14)

According to prescription of dimensional regularization, the integral equals to zero
(Muta, 1987). Therefore, there is no ultraviolet divergence in these graphs.

The calculation results of the finite temperature parts of Figs. 1(b)–1(d) re-
spectively are

Ia = 2(N2 − 1)Nf g2

[
3(m2)1+ε/2 i0(2− D/2)

(4π )D/22π2

∫ ∞
0

dp
p2√

p2 +m2

1

eβ
√

p2+m2 + 1

− i
1

8π4

∫ ∞
0

dp
p2√

p2 +m2

1

eβ
√

p2+m2 + 1

∫ ∞
0

dk
k2

√
k2 +m2

1

eβ
√

k2+m2 + 1

+ i
m2

8π4

∫ ∞
0

dpdk
1

eβ
√

p2+m2 + 1

1

eβ
√

k2+m2 + 1

p√
p2 +m2

k√
k2 +m2

× ln

∣∣∣∣ (m2 − pk)2 − (k2 +m2)(k2 +m2)

(m2 + pk)2 − (p2 +m2)(k2 +m2)

∣∣∣∣
− i

1

2π2

(
1

12β2

)∫ ∞
0

dp
p2√

p2 +m2

1

eβ
√

p2+m2 + 1

]
, (15)

Ib = −3ig2N(N2 − 1)

(
1

12β2

)2

, (16)
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Ic = 9ig2

4
N(N2 − 1)

(
1

12β2

)2

, (17)

Id = − ig2

4
N(N2 − 1)

(
1

12β2

)2

. (18)

Summing them, the first-order correction of the thermodynamic potential is
obtained,

Ä1 = −iβ(Ia + . . .+ Ie)

= g2β2(N2 − 1)Nf

[
3m2

32π4

(
−γE + ln

4π

m2
+ 3

2

)∫ ∞
0

dp
p2√

p2 +m2

1

eβ
√

p2+m2 + 1

− 1

8π4

∫ ∞
0

dp
p2√

p2 +m2

1

eβ
√

p2+m2 + 1

∫ ∞
0

dk
k2

√
k2 +m2

1

eβ
√

k2+m2 + 1

+ m2

8π4

∫ ∞
0

dp dk
1

eβ
√

p2+m2 + 1

1

eβ
√

k2+m2 + 1

p√
p2 +m2

k√
k2 +m2

× ln

∣∣∣∣ (m2 − pk)2 − (k2 +m2)(k2 +m2)

(m2 + pk)2 − (p2 +m2)(k2 +m2)

∣∣∣∣
− 1

2π2

(
1

12β2

)∫ ∞
0

dp
p2√

p2 +m2

1

eβ
√

p2+m2 + 1

]
− g2 N(N2 − 1)

144
T3.

(19)

3. PRESSURE OF QUARK–GLUON PLASMA

Next we discuss the pressure of QGP in equilibrium state. According to ther-
modynamics theory, the relation between thermodynamic potential and pressure
is

P = TÄ. (20)

When the QGP is the ideal gas, the zero approximation of pressure is (Wong, 1994)

P(0) = TÄ(0) = 37
π2

90
T4. (21)

In the calculations the mass of quark is ignored in general because the QGP is
produced at high temperature and the momentum of quark is very large. Inserting
Eq. (19) into Eq. (20) and takingm= 0, we obtain the first-order correction of the
pressure,

P(1) = −g2Nf
5(N2− 1)

4× 144
T4− g2 N(N2− 1)

144
T4. (22)
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The sign ofP(1) in Eq. (22) is negative, which means that the pressure is decreased
after considering the interactions among particles. At finite temperature, the cou-
pling constant is related to temperature and needs renormalization. In one-loop
approximation (Fujimoto, 1987) it is

g2
r =

g2

1+ (2Ng2/4π )[8π3T2/9
√

3M + 2π2T/3M + A]
, (23)

where A is a constant not to be related to temperature, M is a parameter of renor-
malization group equation. In Eq. (23) there only remains the term of temperature
square in denominator because the temperature of the system is very high and we
have

P(1) = 9
√

3M

4Nπ2

[
Nf

5(N2− 1)

4× 144
+ N(N2− 1)

144

]
T2. (24)

Comparing Eq. (24) with Eq. (21), we knowP(1) is very less thanP(0) because
P(1) is the order of temperature square andP(0) is the order ofT4. Combining the
two terms, we obtain the pressure

P = P(0)+ p(1) = 37
π2

90
T4− 9

√
3M

4Nπ2

[
Nf

5(N2− 1)

4× 144
+ N(N2− 1)

144

]
T2.

(25)

4. CORRECTION OF CRITICAL TEMPERATURE OF
DECONFINEMENT PHASE TRANSITION OF HADRON

In the MIT bag model, the quarks are treated as massless particles inside a
bag of finite dimension, and the perturbation QCD is valid in the region because
the non-Abelian gauge theories have the property known as asymptotic freedom
(Quigg, 1983). When the quarks and the gluons inside the bag are idealized to be
noninteracting and massless and there is no net baryon number, the partial pressure
arising from the quarks, antiquarks, and the gluons is

P(0) = TÄ(0) = 37
π2

90
T4. (26)

The bag pressureB is 206 MeV (Wong, 1994). LetP(0) = B, then the critical
temperature of hadron deconfinement phase transition may be estimated,

Tc ∼ 144 MeV. (27)

After the pressure being corrected, in Eq. (25) takingN = 3, Nf = 2, the pressure
is

P = 37
π2

90
T4− g2 11

36
T4. (28)
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Let the pressure= B, then the critical temperature of deconfinement phase tran-
sition may be calculated. Although it is related to coupling constant, we can be
sure that the pressure would be decreased after the correction and the critical
temperature would be increased. Owing to a quark being in asymptotic freedom
in the region, the coupling constant is less, the increase of the temperature is
not big. Several special values are given in the following, whileg2 = 0.1, Tc ∼
144.5 MeV; g2 = 0.5, Tc ∼ 145.3 MeV; andg2 = 1, Tc ∼ 146.7 MeV.

5. SUMMARY

In the paper the thermodynamic potential of QGP in equilibrium state is cal-
culated by finite temperature QCD. Using the relation between thermodynamic
potential and pressure, the correction of the QGP pressure is discussed. The result
indicates that the pressure is decreased due to the interactions among particles.
In the MIT bag model, the critical temperature of hadron deconfinement phase
transition is estimated. The temperature is increased with the decrease of the pres-
sure arising from the kinetic energy of quarks and gluons owing to the interactions
among particles. But the quarks are in weak coupling region inside the MIT bag
and the coupling constant is less, the correction of critical temperature of decon-
finement phase transition still is small.
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